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1  |  INTRODUC TION

The etiology of a disease refers to the causative trigger(s), whereas 
pathogenesis refers to the mechanism(s) by which the disease pro-
gresses. Over the past century, we have appreciated that periodon-
titis is of a microbial etiology and an inflammatory pathogenesis, 
albeit the coordination of the contributing factors for the initiation 
and progression of the disease may vary from an epidemiological 
perspective.1 In other words, while the microbial biofilm developing 
on the tooth surface constitutes a necessary etiological factor, its 
mere presence is insufficient for the initiation of the disease. Further 
risk factors, such as host genetics, lifestyle, stress, and systemic 
conditions, that dictate the immunopathogenesis are crucial for the 
transition from a healthy to a diseased state. Such factors will be 
addressed in other papers within this special issue.

Whether it is one form of disease manifesting with different 
degrees of progression and severity, or different forms of disease 
exhibiting similar clinical manifestations, has long been a topic of 
public curiosity and scientific endeavor for mankind. The historical 
and contemporary knowledge established by pioneering researchers 
around the globe has led to paradigm shifts in our understanding 
of the etiology of the disease. This article discusses the continuum 
of seminal discoveries in the field, while highlighting the European 
contribution and its universal impact.

2  |  ETIOLOGIC AL HYPOTHESES AND 
MODEL S FOR PERIODONTAL DISE A SES

At the cradle of European civilization, ancient Greeks had already 
been able to identify the signs of periodontal disease and used their 
sense of smell as a diagnostic aid. Hippocrates refers to his scripts 
that the “evil malodor” is as result of “pitius” and even proposed 
oral rinsing with a solution of natural herbs as a treatment method.2 
Centuries later, the Romans observed “wobbly” teeth to be a diag-
nostic sign of the disease, which was attributed to the hard “calculus” 
deposits on the tooth surface, a dogma that dominated until the 18th 
century. Then, French pathologist Pierre Fauchard concluded that 
periodontal pathology is “a distinct type of scurvy” of local rather 
than systemic causes, whereas later that century, Scottish physiolo-
gist and surgeon John Hunter supported that gingival inflammation 
is the cause of alveolar bone dissolution, while introducing for the 
first time the term “periodontosis”.3 In late 19th century American 
dentist John Riggs historically named the disease “pyorrhea alveo-
laris” (also known as "Riggs' disease”), describing it as a suppurative 
inflammation of the gingiva and the alveolar process, while strongly 
advocating for hard calculus as the single local causative factor.4 
This theory coincided with the time of an unparalleled evolution 
of the scientific field of microbiology, leading to the contemporary 
notion that bacteria residing within the dental plaque deposits are 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Periodontology 2000 published by John Wiley & Sons Ltd.

www.wileyonlinelibrary.com/journal/prd
mailto:﻿
https://orcid.org/0000-0002-8164-0653
https://orcid.org/0000-0002-1225-5751
mailto:george.belibasakis@ki.se
http://creativecommons.org/licenses/by/4.0/


2  |    BELIBASAKIS et al.

indeed the causative factor of “pyorrhea alveolaris”. At that time, 
Willoughby D. Miller, an American dentist, studied in greater detail 
oral microorganisms at the lab of Robert Koch in Berlin. Based on his 
observations, he introduced the “chemo-parasitic” theory for the en-
dogenous causation of oral diseases, according to which dental and 
gingival tissues are susceptible to being challenged by the bacteria 
inhabiting the mouth.5

The role of microbial dental plaque in the primary etiology of peri-
odontal disease was revised and modernized after the second half of 
the 20th century. Danish researchers led by Harald Löe showed in a 
human volunteer “experimental gingivitis” cohort that abstinence of 
oral hygiene leads to dental plaque accumulation and development 
of gingival inflammation, which is diagnosed clinically as gingivitis. 
Subsequent reinforcement of oral hygiene and removal of dental 
plaque causes inflammation to subside and subsequently restore gin-
gival health.6 Characteristic microbiological changes accompanied 
these clinical observations, primarily as a switch from a sparse plaque 
consisting of Gram-positive cocci and rods to a Gram-negative bacte-
rial community enriched with fusobacteria and filaments, and finally 
supplemented with spirilla and spirochetes. The initiation of micro-
biological changes coincided in time with the diagnosis of mild gin-
givitis. The reinstitution of oral hygiene and consequent reduction 
of visible dental plaque and gingival inflammation re-established the 
original sparse plaque microbiota.7 The experimental gingivitis model 
continues to deliver valuable data, particularly when applied in con-
junction with high molecular-throughput technologies.8–12

The experimental periodontitis model (cotton ligature-induced) 
in the beagle dog established by Swedish researchers led by Jan 
Lindhe was instrumental in establishing the relationship between 
longstanding dental plaque accumulation and irreversible periodon-
tal tissue breakdown. Clinical and histopathological observations 
indicated that abstinence of oral hygiene and accumulation of den-
tal plaque in the dogs led over time to a gradual conversion of sub-
clinical to clinical gingivitis, and subsequently to periodontitis.13–15 
Matched histopathological observations in experimental periodonti-
tis led by Swiss researcher Hubert Schroeder revealed the proximity 
of subgingival plaque to the pocket epithelium and established its 
role as an initiator of the cellular inflammatory events in the connec-
tive tissues beneath.16–18

Solid etiological theories for periodontal diseases started to 
emerge towards the last quarter of the previous century. Danish 
research supported the “non-specific” plaque hypothesis, which 
was led by dentist and microbiologist Else Theilade.19 This hypothe-
sis sets dental plaque mass in the center of the etiology of disease, 
claiming that all overgrown indigenous oral species contribute to the 
overall increased virulence properties of the plaque. Therefore, nei-
ther compositional differences in plaque were considered relevant 
to the disease, nor was there a clear distinction between pathogenic 
or non-pathogenic species. Hence, this theory directs preventive 
and treatment approaches towards suppressing the cumulative for-
mation of dental plaque.

On the other side of the “non-specific” plaque hypothesis were 
the supporters of the “specific” plaque hypothesis, established by US 

microbiologist Walter Loesche.20 The emergence of this hypothesis 
was met with prolific methodological progress in laboratory micro-
biology, such as the feasibility to cultivate anaerobic bacteria or de-
tect non-cultivable organisms using genomic methods. According to 
this hypothesis, periodontal disease is established due to the over-
growth of specific indigenous plaque bacteria. Therefore, the theory 
supports that its treatment should be based on the targeted elimi-
nation of these bacteria with the use of suitable antimicrobials. The 
“specific” plaque hypothesis was consolidated by the seminal work 
of American researcher Sigmund Socransky and his co-workers, who 
classified subgingival bacteria in six color-coded distinctive micro-
bial complexes, based on their association with periodontal health 
or periodontal disease.21 The most recognizable complex globally is 
the “red complex”, which consists of the Gram-negative anaerobes 
Porphyromonas gingivalis, Tannerella forsythia, and Treponema denti-
cola, which are found in elevated numbers and proportions in pock-
ets from active periodontal lesions.

At this stage, it became apparent that periodontal diseases were 
not adhering to the classical traits of medical infections, in the sense 
that no sole exogenous pathogen is responsible as a causative agent 
for the disease. In contrast, members of the endogenous microbi-
ota and their interplay with the host are decisively involved in the 
pathogenic outcome. A reconciliation of previously proposed hy-
potheses came in the late 1990s by UK microbiologist Philip Marsh, 
who proposed the “ecological” plaque hypothesis.22,23 This hypoth-
esis advocates that a homeostatic balance between the host and the 
microbiota prevails in health. Disease ensues when an imbalance 
occurs in the interaction between the two, driven by changes in 
their microenvironment. Under the newly established conditions, 
resident members of the oral microbiota that previously lived in ho-
meostatic harmony with the host, begin to increase in proportions or 
virulence and act as opportunistic pathogens by instigating tissue-
destructive inflammation.

A microbial imbalance is often referred to as “dysbiosis”, and the 
synergizing microbiota as “dysbiotic microbial communities”. The 
principles of the “ecological” plaque hypothesis were further framed 
in the “polymicrobial synergy and dysbiosis” concept established 
by US researchers George Hajishengallis and Richard Lamont.24 
This consolidated the notion that different bacterial members, or 
combinations thereof, within the community fulfill distinct roles 
that collectively shape and stabilize a disease-provoking microbi-
ota that instigate chronic inflammation. The inflammation contains 
tissue-breakdown-derived nutrients that are readily available for 
well-adapted opportunistic pathogens that can also be perceived as 
“inflammophilic”,25 thus exacerbating further dysbiotic changes. The 
concept of the “keystone pathogen” hypothesis was formulated by 
the same researchers,26 which gravitates around the potential role 
of P. gingivalis and its virulence factors in orchestrating inflammatory 
conditions in the periodontium that convert a symbiotic microbiota 
into a dysbiotic one. At this point, P. gingivalis was already considered 
as one of the most important periodontal pathogens. However, the 
main argument between the “keystone” hypothesis and earlier ones, 
which also focused on P. gingivalis (such as the “red complex” in the 
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frame of “specific” plaque hypothesis), is that even low numbers of 
P. gingivalis as a “keystone pathogen” could have a dramatic impact 
on the phenotypic profile of the subgingival biofilm. Therefore, ac-
cording to the latter hypothesis, it is not a matter of abundance, but 
rather the role of P.  gingivalis as the puppet-master orchestrating 
other members of the biofilm community.

In 2020, a new theory on the etiology of periodontitis was for-
mulated by US and Australian researchers, which was coined the 
definition “Inflammation-Mediated-Polymicrobial-Emergence and 
Dysbiotic-Exacerbation” (IMPEDE) model.27 In this model, inflam-
mation is the hallmark of the dysbiotic events, which drives the 
transition from oral health to periodontitis. Indeed, periodontitis is 
a multifactorial disease, in which both the subgingival microbiota 
and the host immune response are central actors. However, there 
remains today a “chicken and egg” debate. In other words, are the 
compositional changes observed in the subgingival biofilm, as re-
flected in the 1990's “red complex” concept,21 the course of the 
disease, or merely a consequence of the altered subgingival ecolog-
ical conditions caused by inflammation? In that respect, the “key-
stone pathogen” hypothesis and the IMPEDE model might be looked 
upon as explanatory concepts for the complex interaction between 
the oral microbiota and host immunity in periodontitis, as viewed 
through the lens of the “oral microbiologist” and the “oral immunol-
ogist”, respectively.

3  |  ANAEROBIC MICROBIOLOGY

Anaerobic bacteria are among the major colonizers on mucosal sur-
faces of the human body, usually serving as beneficial or harmless 
commensals but many of them also being potential opportunistic 
pathogens. However, because of their slow growth, demanding 
growth conditions, and need for highly specialized workforce, knowl-
edge of their presence and clinical significance remained unresolved 
for long time. Due to improvements in anaerobic microbiological 
techniques, the role of anaerobes in periodontal diseases burst onto 
the scene in the latter part of the 1970's. In a series of studies con-
ducted by Jörgen Slots at the Royal Dental College, Copenhagen, 
Denmark, the composition of subgingival plaque collected from 
periodontally healthy, gingivitis, and periodontitis individuals was 
examined by using anaerobic culture and microscopy techniques.28 
Based on Gram-stain, cell morphology, and growth characteristics 
under different gaseous atmospheres, it was shown that subgingival 
bacterial communities were dominated by facultative Gram-positive 
cocci during health but switched to strictly anaerobic Gram-negative 
bacilli during periodontitis.

Since the early phases of periodontal microbiology relied merely 
on culture-based techniques, the purported dominance of Gram-
negatives as suspected periodontal pathogens was somewhat bi-
ased. Oxygen tolerance and other growth characteristics within 
anaerobic taxa vary considerably, whereas the most sensitive ones 
fail to grow in pure culture with currently employed media or in an-
aerobic culture conditions even under extended incubation. They 

may instead require the co-existence of oxygen-consuming species 
and nutritional support in co-cultures with helper microorganisms, 
similar to conditions when growing in polymicrobial biofilms.29 
Indeed, UK microbiologist William Wade's research group has put 
praiseworthy efforts into developing methods to cultivate the very 
fastidious, difficult-to-culture oral bacteria.29–31 By means of bacte-
rial isolates, it is possible to describe novel species and to examine 
various characteristics connected to their potential virulence. Of 
special interest has been the phylum Synergistetes due to its con-
sistent association with periodontal and peri-implant diseases.31–35

Open-ended culture-independent molecular techniques have 
implicated a wide variety of phylotypes within not only Gram-
negative but also Gram-positive, mostly anaerobic taxa playing a 
role in periodontal disease.35,36 In this context, compared to culture-
based detection, an explanation for the observed emergence of 
Gram-positive taxa may be their incorrect interpretation as Gram-
negatives due to the failure of Gram-staining to identify many Gram-
positive anaerobes, such as Filifactor alocis and Eubacterium-like 
taxa.36

Over 50 years following the development of the experimental 
gingivitis model, such a study was conducted in the United Kingdom 
using 454-pyrosequencing and non-selective culture for character-
izing the bacterial composition during the transition from health to 
gingivitis.37 A shift in the community structure and an increased di-
versity were observed during the gingivitis-establishment period (eg, 
absence of oral hygiene). Alongside this, was an increase in relative 
abundance of species/phylotypes within Gram-negative, anaerobic 
or microaerophilic genera Campylobacter, Fusobacterium, Lautropia, 
Leptotrichia, Porphyromonas, Selenomonas, and Tannerella.

At approximately the same time, Dutch, Swiss and German re-
search groups reported on fluorescence in situ hybridization (FISH) 
microscopy-visualized bacterial communities in subgingival bio-
films.38,39 Porphyromonas (P.  gingivalis, P.  endodontalis), Prevotella 
(P. intermedia), a Gram-positive anaerobic coccus, Parvimonas micra, 
and members of the Synergistetes phylum formed microcolonies in 
the top layer of biofilms, while spirochetes dominated the outer 
layers of the biofilm.39 Schlafer et al38 brought evidence of the in-
volvement of the Gram-positive, strictly anaerobic rod F.  alocis in 
periodontal disease; this asaccharolytic species was frequent in 
subgingival biofilms in patients suffering from chronic and aggres-
sive periodontitis, but only occasionally detected in periodontitis-
resistant older individuals. It is suggested that F. alocis is an important 
organism in the structural organization of the subgingival biofilm,38 
whereas Swedish researchers recently identified that it expresses a 
unique protein exotoxin.40,41

4  |  SPECIFIC MICROORGANISMS AND 
THEIR VIRULENCE FAC TORS

The advent of anaerobic microbiology and the development of bio-
chemical and molecular microbiological assays have brought along 
significant discoveries at the individual species level. Whilst there 
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are numerous taxa to consider, this section will address further most 
well-studied, namely the black pigmenting anaerobes (ie, P. gingivalis 
and Prevotella spp.) and Aggregatibacter actinomycetemcomitans.

4.1  |  Black pigmenting anaerobes

A hundred years ago, two scientific papers from the United States 
reported on bacteria that formed pigmented colonies on blood agar 
under anaerobic conditions. In 1921, Oliver and Wherry were the 
first to isolate these Gram-negative, non-motile rods from human 
samples and described the organism as Bacterium melaninogeni-
cum. Some years later, in 1928, its characteristic growth and pig-
ment production were further specified by Burdon: “this organism 
exhibits to a marked degree the habit of growing in very intimate 
mixture with other bacteria, and that strictly pure cultures are ob-
tained with considerable difficulty … the colonies at first colorless, 
later become brown, then jet black”.42 After six decades, UK micro-
biologists Haroun Shah and David Collins reclassified these so-called 
‘black-pigmented anaerobic bacteroides’ (BPB) to two novel genera, 
asaccharolytic species to Porphyromonas43 and moderately sac-
charolytic species to Prevotella.44 Their observed clinical relevance 
triggered a special symposium on black pigmenting bacteroides, or-
ganized by the Turkish Society of Microbiology, supported by the 
Federation of Microbiological Societies, which was held in Antalya, 
Turkey, in 1993. A topical issue was then published covering various 
aspects of BPB as important causative agents in a wide variety of 
human infections at different body sites (https://acade​mic.oup.com/
femsp​d/issue/​6/2-3). In particular P.  gingivalis but also Prevotella 
intermedia/P. nigrescens are clinically relevant species in the context 
of periodontal diseases. A long-line of research on various aspects of 
the pathogenicity of P. gingivalis has been the focus of many leading 
researchers from Europe and the United States, who put P. gingivalis 
on a pedestal as a ‘keystone’ pathogen and driving force for dys-
biosis in subgingival biofilms, with the capacity to interact variably 

with the host's innate responses and persevere in the periodontal 
pocket.45 This species is known to produce several secreted proteo-
lytic enzymes.46 The most well established and characterized among 
them are its cysteine proteinases, namely two Arginine-specific pro-
teinases and a Lysine-specific proteinase, known as R and K gingi-
pains respectively. UK and Polish researchers have made significant 
progress in the discovery and characterization of these bacterial 
enzymes.47–51 Their action is known to deregulate the innate im-
mune responses for the benefit of the species and its persistence 
and survival within the host. Hence, they are considered to be its 
most crucial virulence factor.52

Unlike the widely studied effects of P. gingivalis, our knowledge 
on the increasing number of oral Prevotella species interfering in 
dysbiotic biofilms is rather scarce. Notably, Prevotella is a highly di-
verse genus, including around 30 human species, which were origi-
nally isolated from the oral cavity,53 with varying virulence and other 
properties; while some are commensals and protective for the host, 
other Prevotella species can act as pathobionts under inflammatory 
conditions. For example, within the phylogenetically closely related 
species of the P. intermedia group, the well-known black-pigmented, 
phenotypically similar P.  intermedia and P.  nigrescens play a role in 
periodontal diseases, whereas such a link is missing for the faintly 
pigmented P. aurantiaca and P. pallens.54 Still, only limited informa-
tion exists on the involvement of other pigmented or non-pigmented 
Prevotella species in dysbiotic oral biofilms.

4.2  |  Aggregatibacter actinomycetemcomitans

Aggregatibacter actinomycetemcomitans is a Gram-negative bacte-
rium with a central etiological role in periodontitis affecting young 
individuals, but has also been implicated in adult periodontitis, as 
well as severe non-oral infections.55 The bacterium grows in both 
aerobic and anaerobic atmospheres and will develop star-like 
structures centrally when incubated on blood agar (Figure  1A). 

F I G U R E  1  A, Microscopic picture of typical Aggregatibacter actinomycetemcomitans-colonies from a clinical sample growing on an agar 
surface. B, C, Transmission electron microscopic pictures of neutrophils exposed to A. actinomycetemcomitans under anaerobic conditions 
at 37°C during gently agitation. Reproduced with permission from Wiley from Johansson et al.80 B, Neutrophils exposed for 60 min to a 
low leukotoxic serotype c strain (NCTC9710). C, Neutrophils exposed for 7 min to a highly leukotoxic serotype b strain of the JP2 genotype 
(HK1519).
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Currently, it is classified in seven serotypes based on its immuno-
dominant antigen, which is an O-polysaccharide of the lipopolysac-
charide (LPS).56,57 It has a complex dissemination pattern, acquired 
through transmission from the saliva of colonized individuals, and 
is suggested to initially colonize the oral mucosa early in life as a 
facultative intracellular pathogen,58 and may translocate from the 
oral mucosa to the gingival crevices, where it competes with other 
bacteria within that niche.59 Successful establishment and persis-
tent colonization of A. actinomycetemcomitans in gingival crevices 
may lead to periodontal destruction in susceptible individuals.60 
Finnish researcher Sirkka Asikainen has shown in a series of studies 
that this species shows intrafamilial aggregation, with the child al-
ways fostering the same serotype as the parent,61 which may partly 
explain the familial pattern of early onset or aggressive cases of 
periodontitis.62 The pattern of interpersonal transmission of A. ac-
tinomycetemcomitans appears to be different to that of P. gingivalis, 
in the sense that the former is transmissable mainly from parents 
to children, whereas the latter is transmissable between adults.63

A substantial genetic diversity within this bacterium contrib-
utes substantially to the increased disease risk in colonized in-
dividuals.64,65 The absolute numbers and relative proportions of 
A.  actinomycetemcomitans in the subgingival biofilms of young 
individuals with periodontitis are greater than in those of older 
individuals.64 Unique for this bacterium among the inhabitants of 
the oral microbiota is the expression of the two exotoxins, a leu-
kotoxin (LtxA) and a cytolethal distending toxin (CDT),66 studied 
thoroughly by Swedish researchers. The ability of A. actinomyce-
temcomitans to kill human immune cells was first reported in 1980 
by US researchers, showing that the leukotoxicity varies substan-
tially among isolates.67,68 A later identified genotype of A. actino-
mycetemcomitans with a 530 base pair deletion in the promoter 
gene of the ltxA operon was shown to be highly associated with 
inducing periodontal tissue destruction.69 Dissemination studies 
have traced the origin of this deletion in the Mediterranean part 
of Africa several thousand years ago,70 whereas the strict verti-
cal transmission pattern of A. actinomycetemcomitans resulted in 
a slow dissemination of this genotype, largely following the pop-
ulation trades.71 Today, the JP2 genotype of A.  actinomycetem-
comitans can be detected sporadically in many parts of the world 
with the highest prevalence in North- and West-Africa as well as 
in some parts of South America.72 Danish and Swedish research-
ers have documented the dramatically increased risk for an ini-
tiation of periodontal disease in individuals that harbor the JP2 
genotype, consolidating on LtxA as an important etiological factor 
for periodontitis that affects adolescents.73–75 They also identified 
that genotypes other than the JP2 clone can display an enhanced 
leukotoxicity and thus, an increased risk for the disease.55,64,76 It 
was discovered that the shared features of all these highly viru-
lent variants (JP2 and non-JP2) are their belonging to serotype b, 
a common arbitrary primed polymerase chain reaction (PCR) pat-
tern, and an intact CagE gene.77

The research group at Umeå University, northern Sweden, has 
been studying for more than two decades the variety of mechanisms 

by which LtxA affects human immune cells,78 including killing of leu-
kocytes, inducing degranulation of neutrophils and protecting the 
bacteria from phagocytic killing (Figure  1B,C).79,80 The rapid pro-
inflammatory response in macrophages turns out to be an LtxA-
induced inflammatory cell death, a phenomenon characterized as 
pyroptosis and, involved in the pathogenicity of several degenerative 
diseases.81–83 The group also investigated in-depth the less studied 
CDT of A. actinomycetemcomitans, a genotoxin expressed by several 
non-oral Gram-negative pathogens. Apart from its capacity to cause 
cell growth arrest84,85 the CDT of A.  actinomycetemcomitans was 
also shown to regulate inflammatory and bone metabolic pathways 
of relevance to the pathogenesis of periodontitis.86–89 However, the 
involvement of CDT in periodontal disease progression is not yet 
clinically confirmed.90

5  |  BIOFILMS

The first ever microorganisms to be microscopically observed 
by Dutchman Antonie van Leeuwenhoek were bacteria of his 
own dental plaque scraped from the tooth surface. He described 
the lively and diverse-shaped structures seen under his primor-
dial microscope as “animalcules”. It was not until the end of the 
20th century, when we came to the realization that dental plaque 
posesses the properties of a microbial biofilm.91–93 The term bio-
film was introduced by US-based Canadian microbiologist William 
Costerton, to describe complex microbial communities attaching 
to and growing on surfaces in different ecosystems in nature, in-
cluding the unique environment created by teeth in the oral cav-
ity.94 Allegedly, the ‘Eureka’ moment for Costerton came during 
a visit to Amsterdam, where he realized the importance of bio-
films in disease, as well as the distinctive phenotypic properties of 
bacterial life within biofilms, such as antibiotic tolerance or slow 
growth rate.95

Early reports on dental biofilms in the microbial (rather than sal-
ivary pellicle) context came from the United Kingdom, where the 
bactericidal effect of chlorhexidine was tested on single species 
laboratory-grown biofilms of Streptococcus sanguinis.96 This proved 
that the minimal inhibitory concentrations required for the elim-
ination of biofilms are greater than those for planktonic bacterial 
cultures. Hence, the door was opened to investigations on the an-
timicrobial efficacy of various treatment modalities on dental bio-
films.97 Other UK studies focused on the ecological relationships 
within mixed oligo-species biofilms, revealing that coaggregation-
mediated interactions between Fusobacterium nucleatum and other 
species facilitated the survival of obligate anaerobes in aerated en-
vironments.98 Highly relevant experimental dental biofilm models 
were meticulously developed, including the multi-species Zurich 
subgingival biofilm model.99 Within the model, it was possible to 
study the efficacy of commonly used antibiotics100 or novel antimi-
crobial approaches,101,102 the ecological interactions between spe-
cies,103–109 or the interactions between biofilms and host tissues110 
in complex bioreactor systems.111,112
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Beyond the well-defined and controlled multi-species biofilms, it 
is possible to generate and maintain in culture natural “microcosm” 
biofilms from oral sources, which are heterogeneous and biodiverse 
microbial ecosystems of known and unknown species, as proposed 
by New Zealand researchers.113 The origin of the sample (saliva/
plaque and donor) is an important determinant for the development 
of the microcosms, whereas their bacterial composition can be ret-
roactively determined by 16S rDNA sequencing.114 Dutch research-
ers have made considerable progress in establishing reproducible 
subgingival microcosm biofilm communities,115 in conjunction with 
clinically relevant periodontal questions, such as conferring the 
biogeographical associations of different sampled oral sites (saliva, 
tongue, tonsil, pocket) of periodontitis patients116 or testing the ef-
fects of different interventions on gingivitis.117

The biofilm architecture and the spatial distribution of intact 
subgingival biofilms have been studied in detail by Dutch and 
Swiss researchers, who used a combination of fluorescence in situ 
hybridization (FISH) and confocal scanning electron microscopy 
(CLSM) to localize the most abundant phyla and species associated 
with periodontitis.39 The biofilms were dominated by Actinomyces 
spp., T. forsythia, F. nucleatum, Spirochaetes, and Synergistetes. The 
latter were found at the outskirts of the biofilm layer, in possible 
contact to the juxtaposed epithelial layer and neutrophils in the 
periodontal pocket (Figure  2). Common periodontal pathogens 
colonize in a delayed fashion the biofilms and form microcolonies 
therein. These observations on the structure of subgingival bio-
films utilizing FISH and CLSM complement the earlier landmark 
electron microscopy studies of Max Listgarten,118 by deciphering 
the broader morphological diversity of the subgingival biofilm mi-
crobiota. The methodological basis for such studies has been the 
development of sensitive FISH and immunofluorescence assays by 
Swiss and German researchers, suitable for use in clinical dental 
plaque samples.119,120

Despite their close vicinity, supra- and subgingival biofilms 
differ from each other with regards to microenvironmental con-
ditions such as redox potential, pH, and nutritional factors.121 
For fastidious anaerobic bacteria, synergistic interactions with 
oxygen-consuming organisms in subgingival biofilms are import-
ant, as it facilitates the conversion to an anaerobic microenviron-
ment, favorable for their growth. Decreasing oxygen tension in 
deepening periodontal pockets offers highly reduced environ-
ments needed for strictly anaerobic periodontitis-associated taxa 
in dysbiotic biofilms. Inflammation also affects the microenviron-
ment, including a shift towards alkaline pH, and increasing avail-
ability of host proteins and glycoproteins in gingival exudate, thus 
favoring the growth of proteolytic and asaccharolytic bacteria.23 
According to a consensus report of the Joint European Federation 
of Periodontology (EFP)/ European Organization for Caries 
Research (ORCA) workshop,122 to further clarify functional roles 
of microbial populations in dental biofilms, studies on biofilm com-
munity structures and cell-cell communication by advanced imag-
ing and gene expression analyses in both symbiotic and dysbiotic 

conditions, as well as randomized clinical trials exploring the mi-
crobiological endpoints are warranted.

6  |  MOLECUL AR TECHNOLOGIES FOR 
MICROBIAL DETEC TION

The continuous development of molecular methods has been in-
strumental to the pioneering scientific discoveries that, led to the 
formulation of the different theories that describe the role of the 
oral microbiota in the etiology of periodontitis. Importantly, each 
theory was formulated based on analysis of data available in differ-
ent research eras. Therefore, the methods used at different times 
had a significant impact on the questions that could be addressed 
by researchers. Consequently, without the massive technological 
improvement, our insight into the complex etiology of periodontitis 
would not have progressed with the same speed, as has been the 
case in the last two decades.

Microbial cultures and direct light or dark field microscopy were 
the methods available in the studies that founded the non-specific 
plaque hypothesis,19 whereas the development of anaerobic cul-
turing was the important technical improvement, which shifted the 
focus towards anaerobic bacteria as specific pathogens in periodon-
titis, thus formulating the specific plaque hypothesis.20 The main 
challenge with culturing techniques at that time was the fact that a 
substantial proportion of the oral microbiota could not be cultured, 
which hampered the possibility to grasp the complexity of the sub-
gingival community. This was clearly demonstrated by the landmark 
paper from 2001 by Paster and Dewhirst,123 where culture indepen-
dent molecular methods, cloning and sequencing, were used to deter-
mine the diversity of the subgingival plaque microbiota. Specifically, 
data revealed a hitherto unpreceded diversity comprised by as much 
as 700 different bacterial species, out of which 40% were unknown 
phylotypes, which had not previously been identified. In addition, a 
collaboration between American and Norwegian researchers, which 
also used cloning and sequencing, reinforced this complexity, by 
showing that in oral health, the microbiota found at different oral 
sites was composed of as many as 50 predominant species.124 The 
transition from culture-based identification to molecular techniques 
was a critical step towards revealing the complexity of the subgin-
gival microbiota both in health and periodontitis, which fertilized 
the transition from the non-specific and specific plaque hypotheses 
towards the ecological plaque hypothesis. In addition, the realiza-
tion that a substantial proportion of the oral microbiota could not 
be cultured by means of standardized procedures, led to a whole 
new era, in which more sophisticated approaches were developed in 
the quest to culture the unculturables.125 This endeavor is still on-
going with significant contributions made from both European and 
American researchers,29,30,126,127 which, in combination with whole 
genome sequencing,128–131 has illuminated hitherto unknown details 
about the uncultured part of the oral microbiota, and their potential 
aetiological role in periodontitis.
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In periodontal microbiology, there is a time prior to and follow-
ing the 16S rDNA gene was identified as a tool to be used for tax-
onomic classification by Carl Woese in 1990,132 which dramatically 
changed the possibilities to identify the unculturable part of a micro-
bial community.133 Researchers have used the 16S gene sequence in 
different ways. The first approach was to design primers for PCR-
based identification of specific bacterial species in oral samples, as 
employed in the 1990's, confirming the presence of specific bacte-
rial species in the subgingival environment in periodontitis.134,135 
Subsequently, quantitative PCR (qPCR) was developed, and in the 
early 2000s it was used to quantify proposed periodontal pathogens 
in clinical samples.136–138 Notably, this approach was later commer-
cialized into clinical screening, and is still used today, as evaluated 

very recently by Dutch researchers.139 Swiss researchers demon-
strated that qPCR, FISH, and conventional microbial cultures show 
convergent trends for species-specific bacterial quantification.140

When it comes to the development of molecular methods ded-
icated with the specific aim of studying the oral microbiota, the 
Forsyth Institute, Boston, USA, has been at the forefront. Starting 
in 1994 with the DNA-DNA checkerboard technique developed by 
Sigmund Socransky, which enabled the simultaneous identification 
of 43 bacterial species within the same sample using whole genomic 
probes.141 the DNA-DNA checkerboard was the method used to 
conduct the study, leading to the pioneering red complex theory 
in 1998.21 Next, in 2009 the Human Oral Microbe Identification 
Microarray (HOMIM) was developed by Bruce Paster,142 which by 

F I G U R E  2  A, Overview of the subgingival biofilm with Actinomyces sp. (green bacteria), bacteria (red) and eukaryotic cells (large green 
cells on top). B, Spirochaetes (yellow) outside the biofilm. C, Detail of Synergistetes (yellow) in the top layer in close proximity to eukaryotic 
cells (green). D, CFB-cluster (yellow) in the top and intermediate layer. E, Fusobacterium nucleatum in the intermediate layer. F, Tannerella sp. 
(yellow) in the intermediate layer. Each panel is double-stained with probe EUB338 labeled with fluorescein isothiocyanate (FITC) or Cy3. 
The yellow color results from the simultaneous staining with FITC and Cy3 labeled probes. Bars are 10 μm. Reproduced under the terms of 
the Creative Commons Attribution License, from Zijnge et al39
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means of small DNA probes enabled the identification of more than 
300 different phylotypes in the same sample. HOMIM was used in 
multiple studies to characterize the microbiota of periodontitis pa-
tients.143–145 Finally, in 2016, HOMIM was replaced by the Human 
Oral Microbe Identification using the next generation sequencing 
(HOMINGS) technique. In HOMINGS, next generation sequencing 
(NGS) was used in combination with reference-based identification 
by means of the DNA probe sequences known from HOMIM, which 
enabled the quantification of approx. 500 different phylotypes.146 
Importantly, the continuous development of dedicated oral molec-
ular methods fueled the possibility of more complex species-level 
analysis of the subgingival microbiota. This led to the identification 
of multiple new organisms, which among others include F.  alocis 
that are now considered important periodontal pathogens.41,147,148 
Consequently, these methods continuously supported the transition 
from the specific plaque hypothesis towards the ecological plaque 
hypothesis, with more focus on the bacterial community, rather than 
presence of specific organisms.

The development of the Human Oral Microbe Database (HOMD) 
in 2010149 and the expanded HOMD in 2018,150 provided research-
ers with an invaluable reference database for taxonomic classifica-
tion of 16S-based data. The true value of HOMD became clearly 
evident after the development of NGS techniques, which revolution-
ized the possibility to perform high-throughput characterization of 
the subgingival microbiota in large numbers of clinical samples. Since 
2010, researchers worldwide have used NGS extensively to study 
the periodontal microbiota,151–155 revealing that, even in health, it 
represents a distinct ecological niche.156

While 16S-based analysis revolutionized our knowledge of the 
composition of the subgingival microbiota in periodontitis versus 
periodontal health, this technique merely delivers taxonomic infor-
mation. In other words, 16S provided researchers with the possibil-
ity to ask the question, “who is there?”. The development of other 
OMICS techniques has dramatically changed this situation, and using 
techniques such as metagenomics, metatranscriptomics, metapro-
teomics, and metabolomics, we are now able to ask the question, 
what are you doing? Metaphorically speaking, we can study the phe-
notypic profile rather than the genotypic profile of the subgingival 
biofilm. Metagenomics,157–159 metatranscriptomics,160–163 metapro-
teomics,164–167 and metabolomics165,168–170 have all been employed 
in periodontology, providing valuable insights into the complex 
microbial networks encountered in the subgingival environment. 
Interestingly, metatranscriptomics was used in 2012 to demonstrate 
the effect of P. gingivalis and A. actinomycetemcomitans on gene ex-
pression profiles of a multispecies biofilm comprised of oral commen-
sals.171 Also, in 2014 the same researchers used metatranscriptomics 
to show that P.  gingivalis induces expression of transportases and 
cell death in a Streptococcus mitis biofilm model,172 in concert with 
the keystone pathogen hypothesis. This is an example of how the 
development and implementation of a new molecular method (me-
tatranscriptomics) enables new analytical possibilities that can pave 
the way for paradigm shifts in understanding a disease. In this con-
text, European researchers have recently combined metagenomics 

and metatranscriptomics data obtained from the same sample ma-
terial, which allows for the characterization of the bacterial activity 
(eg, expressed by log10(RNA/DNA)).173,174 Metaproteomics has also 
proven to be a popular approach in characterizing proteomic inter-
actions and inter-species relationships within polymicrobial biofilm 
communities.104–106,109 Combined layers of proteomic and metage-
nomic data have also been applied in studying the “interactome” of 
the human host proteome and the microbiome in inflamed gingival 
tissue.175 Only the future will tell, if these approaches will advance 
our understanding of the aetiological role of oral bacteria in peri-
odontitis. Nevertheless, history has shown us that the continuous 
development of molecular tools is paramount in providing research-
ers with the data needed to constantly progress and ultimately chal-
lenge any current paradigm describing the aetiological role of oral 
bacteria in periodontitis.

7  |  CLINIC AL MICROBIOLOGY—
PERIODONTAL DIAGNOSTIC S AND 
TRE ATMENT

7.1  |  Specific bacteria or taxonomic groups in 
periodontal diagnosis

Periodontal research has largely been concerned with the compo-
sition of subgingival biofilms at sites of advanced periodontal tis-
sue destruction. Gradually, increasing knowledge of the triggers of 
periodontal infection and roles of specific bacterial taxa, such as 
A. actinomycetemcomitans, C. rectus, P. gingivalis, P. intermedia/P. in-
termedia, T.  forsythia, and T. denticola, generated interest in identi-
fying the occurrence of the major periodontal pathogens in clinical 
samples from deepened pockets.176–179 These fundamental findings 
led to the establishment of oral microbiology testing to guide clini-
cians, when considering the need for adjunctive antimicrobial agents 
in the treatment of patients suffering from advanced periodontitis. 
First, anaerobic culture techniques formed the gold standard for 
detecting periodontal pathogens until DNA-based techniques re-
placed their detection by culture and identification by biochemical 
methods. In oral microbiology service laboratories, the DNA-DNA 
checkerboard and qualitative or quantitative PCR were validated 
and used for selected target organisms.136,139,180,181 Microbiological 
testing was meant to support the clinician in the selection of an ap-
propriate treatment option but also to monitor the treatment out-
come from a microbiological standpoint.182 A Dutch research group 
estimated the outcome of molecular open-ended approaches in-
stead of targeted identification of classical periodontal pathogens 
from diseased sites for clinical decision-making.183 Based on the 
literature, they underlined the presence of a multitude of poten-
tial non-culturable and fastidious pathogens in subgingival biofilms 
other than those identified by routine analysis. This may hamper the 
value of acquired microbial information to assist in providing optimal 
therapy. According to a Swiss study by Eick et al,184 however, the 
detection of the red complex (P. gingivalis, T. forsythia, T. denticola) 
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and A. actinomycetemcomitans in subgingival samples proved to be 
indicative of microbial dysbiosis, and to offer relevant information 
for a clinician, when considering the additional use of systemic an-
tibiotics in the treatment of advanced periodontitis. Indeed, knowl-
edge of periodontitis-associated bacterial quantities in diseased 
pockets is believed to broaden the periodontal diagnosis and to 
guide treatment planning as well as to screen treatment outcomes. 
For such purposes, commercial tests had been developed to sim-
plify microbiological testing in clinical settings. Nevertheless, they 
have exhibited variable performances in detecting and quantifying 
the target organisms in subgingival samples, thus casting doubt upon 
their reliability.139

The current notion of periodontal microbiology is that research 
efforts should focus principally on recognizing the overall shifts in 
the microbiome, rather than changes in the levels of individual bac-
terial species. A French group aimed to determine the genera pres-
ent at higher prevalence in at least 95% of subgingival samples in 
favor of periodontal health or disease.185 For periodontal disease 
with deep pockets, Treponema, Campylobacter, Eubacterium, and 
Tannerella were the genera utilized for extrapolating the dysbiosis 
ratio of periodontitis. The species T. denticola and T. forsythia, and 
C. rectus and E. nodatum, which are typical members of the ‘red’ and 
‘orange’ bacterial complexes, respectively,21 were notable during 
subgingival dysbiosis. In contrast, Porphyromonas was not useful 
in deducing the dysbiosis ratio, since this genus was found in both 
health and disease, although a significant increase in its abundance 
was observed in disease (from 3.34% to 13%).185 Recently, a ma-
chine learning approach was used to overcome statistical shortcom-
ings that were observed in the latter study, such as the lacking of 
an assessment of the diagnostic accuracy of the ratio. A subgingi-
val microbial dysbiosis index (SMDI) was developed and found to 
be reproducible and capable of identifying patients and sites at risk 
for periodontitis.186 Discriminating bacterial taxa for periodontal 
dysbiosis were T. denticola, T. forsythia, Mogibacterium timidum, and 
members of the genus Fretibacterium, whereas typical oral commen-
sals Actinomyces naeslundii and S. sanguinis were linked to periodon-
tal health. Based on three genera, Treponema, Fretibacterium, and 
Actinomyces, the authors introduced a simplified index, improving its 
clinical utility.186 In the context of genus-level analyses, it is note-
worthy that there can be drastic differences in virulence between 
the species within a genus; for example, T. forsythia versus a peri-
odontal health-associated Tannerella serpentiformis30 and P. gingivalis 
versus P. catoniae, the latter being a common and harmless colonizer 
in infants' mouths.187 Furthermore, the virulence of a pathogenic 
species like P. gingivalis varies at the strain level.188,189

7.2  |  Combination of microbial with host markers 
for diagnosis

The etiopathogenesis of periodontitis has an infection-induced in-
flammatory character. Initiation and progression of the inflamma-
tory process is coupled to the biomass and the virulence of biofilms, 

whereas the severity and duration of inflammation determine the 
extent of tissue destruction.190 This means that the microbiological 
and immunological causal components of periodontitis are overlap-
ping and highly integrated to the microenvironment, while evolving 
in a non-linear episodic character.

With the increased knowledge of both microbial and host com-
ponents, researchers naturally aimed to define new diagnostic bio-
markers of periodontitis and also to describe actionable therapeutic 
targets. This interest boosted a trend for biomarker studies in peri-
odontology during the last three decades, considering a combination 
of factors rather than single molecules as a golden key to diagnose 
the initiation, monitor the remission or detect the recurrence of 
periodontitis at the individual level or public trends.191,192 A critical 
step for the definition of biomarkers with high diagnostic accuracy 
was the implementation of time and interplay between microbial-
immune-tissue degradation components into the classic episodic 
periodontal disease pathogenesis model.193 This approach was first 
consolidated by Finnish researchers, elaborating that the shifts in 
bacterial burden, inflammatory response, and tissue destruction do 
not occur simultaneously, but consecutively.194 According to this hy-
pothesis, a periodontitis-associated species may not always be de-
tected at high levels in oral samples, as it may undergo suppression 
due to the effect of high levels of anti-bacterial components within 
the inflammatory response. Similarly, a host-response marker, which 
plays a significant role in inflammation, can be downregulated at a 
specific time due to the decreased bacterial burden. Thus, the hy-
pothesis supports the idea that the microbial and host-components 
of periodontitis should be evaluated together, in a cumulative man-
ner, in order to deduce suitable biomarker(s) with high accuracy, 
sensitivity, and specificity (Figure 3). The success of the cumulative 
use of host- and bacterial biomarkers in detection of periodontitis 
over the fixed thresholds of single markers has been demonstrated 
in various independent studies.195–197 Yet, the successful outcomes 
observed in those studies are usually dependent on participant re-
cruitment criteria; therefore, the validation of the diagnostic power 
of candidate biomarkers in further independent populations is ex-
tremely important.

7.3  |  Susceptibility of periodontal species to 
antimicrobials

Due to awareness of specific bacteria involved in periodontitis, 
researchers and clinicians became conscious of the potential of 
adding systemic antimicrobials in the therapeutic armamentarium 
to treat periodontitis, especially those with rapid progression in 
young individuals. Intensive research was directed to the proper-
ties of potential antimicrobial agents in studies conducted during 
the 1980s and 1990s. The first studies in Europe were published 
by the groups of Jan Lindhe,198 who used metronidazole. In a split-
mouth design, it was shown that systemic metronidazole improves 
periodontal conditions, but the major effect was related to the 
mechanical disruption of the biofilm. Metronidazole was shown 
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to be particularly effective against anaerobic bacteria, and since 
those are dominant in deepened pockets, this drug appears to be 
reasonable choice. Yet, it is not as efficient in eliminating faculta-
tive pathogens like A. actinomycetemcomitans.199 This is expected, 
since aerobic and facultative bacteria are intrinsically resistant to 
metronidazole. The synergistic effect of metronidazole and its hy-
droxymetabolite with amoxicillin against this facultative, capno-
philic species was demonstrated by Dutch researchers.200,201 The 
synergistic activity was verified by an enhanced uptake of met-
ronidazole in the presence of amoxicillin. Clinically, an adjunctive 
application of metronidazole with amoxicillin was able to eradicate 
A.  actinomycetemcomitans and improved the periodontal treat-
ment outcome.202

This novel treatment option was indeed welcome, since A.  ac-
tinomycetemcomitans, if present in subgingival biofilms, is widely 
distributed also in other oral surfaces; therefore, its eradication by 
subgingival scaling alone was not successful and did not result in 
the expected clinical outcome.203 The observations gradually led to 
the combined use of these two antimicrobial drugs as an adjunctive 
treatment of periodontitis, including both its so-called aggressive 
and chronic forms with or without the detection of A. actinomyce-
temcomitans.204–207 This combination is the most widely used adjunc-
tive antibiotic regimen in severe cases of periodontitis independent 
of the prevalent bacterial species.208,209 In the systemic use of such 
a broad-spectrum combination of antimicrobials, the potential side 
effects should be carefully considered. In line with World Health 
Organization (WHO) and European Union (EU) recommendations to 

prevent the development of bacterial resistance, the prescription of 
metronidazole and amoxicillin in periodontal therapy without micro-
bial diagnosis was heavily criticized by Scandinavian researchers. As 
underlined in their letter to the Editor of Journal of Periodontology, 
the tools in the fight against resistant strains include the avoidance 
of an unnecessary use of any antibiotic and broad-spectrum or com-
bination antibiotics, in particular. Therefore, microbial testing was 
seen as necessary to legitimize the adjunctive use of combined met-
ronidazole and amoxicillin.210 In contrast to this is a recent system-
atic review from the United Kingdom, stating that evidence is lacking 
to support a baseline detection of periodontitis-associated species 
as a criterion for adjunctive antibiotics.211 Of note, this conclusion 
was based on limited microbial data and specific antimicrobials avail-
able for analyses.

The rationale of using antibiotics is to inhibit bacterial growth 
by targeting special structures. The in vitro activity of antibiotics 
against bacteria being associated with periodontal disease has been 
measured by several European groups. A comparison between 
Spain and the Netherlands found a higher proportion of resistant 
strains in Spain and underlined the dependence of increased anti-
biotic resistance on antibiotic consumption in the respective coun-
tries.212,213 In Spain, the percentage of beta-lactamase producing 
strains was high, with 54% of the isolated Prevotella strains being 
positive in 2007.214 In the Netherlands, the commonly used anti-
biotics in dentistry proved to be active against oral species tested; 
in 2012, none of the tested 50 P. gingivalis strains exerted any re-
sistance.215 In Portugal, where resistant strains were screened for 

F I G U R E  3  Implementation of the sequential and inter-dependent changes to the episodic periodontitis pathogenesis model. The current 
figure is modified from the original hypothesis, reproduced under the terms of the Creative Commons Attribution License from Gursoy 
et al194
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the presence of resistance genes, 55% of black-pigmented strains (P. 
intermedia, P. nigrescens, P. gingivalis) harbored either an ermF gene 
or a tetQ gene or both.216

The use of quinolones was has been repeatedly discussed in 
the context of periodontal treatment. Moxifloxacin was shown to 
be active against A. actinomycetemcomitans,217 but also against an-
aerobes,218 with in vitro documented activity on intracellular patho-
gens219 and within biofilms.220 Yet, it is shown to develop resistances 
in vitro221 and in vivo.222 Hence, due to its toxicity and the rapid 
development of resistance against quinolones, moxifloxacin has not 
been introduced in periodontal therapy, and according to a decision 
made by European Medicines Agency and European Commission in 
2019, the use of fluoroquinolones should be limited mainly to pa-
tients in hospital care, with only very few outpatient indications 
(EMA/175398/2019). Therefore, they should not be used in the con-
text of periodontal treatment.

Currently, azithromycin can be used as an adjunctive medication, 
for example, in treating advanced periodontitis of penicillin-allergic 
patients. Another benefit is due to a 3-day course, one tablet per 
day which may improve patient compliance. As shown in a multispe-
cies biofilm model, the combination of amoxicillin and metronidazole 
resulted in the strongest reduction in total bacterial numbers, but 
azithromycin also reduced bacterial counts significantly.100 To draw 
clear conclusions, however, comparable data on their efficacy are 
very limited so far.223,224

A clinically relevant question is what kind of patient could gain 
benefit from adjunctive systemic antimicrobial use. In a Swiss ran-
domized clinical trial where patients received non-surgical periodon-
tal treatment and the combination of metronidazole and amoxicillin 
(test group) or placebo (controls), an improved clinical outcome was 
shown in the test group irrespective of their baseline detection of 
A. actinomycetemcomitans, sex, age, or smoking status.225 Recently, 
a German group aimed to identify thresholds for recognizing pa-
tients potentially benefitting from adjunctive antimicrobials; the 
patient's age (<55 years) and severity of periodontal disease (the 
baseline proportion of pockets ≥5 mm exceeding 35% and mean 
attachment level >5 mm) may guide the clinician to select such a 
treatment option.226 One potential patient group could be smokers 
whose periodontal treatment outcome is weaker than that of non-
smokers. A comparison between periodontitis patients treated with 
or without the combination of metronidazole and amoxicillin re-
vealed a significant microbial shift in the test group towards reduced 
amounts of genera involved in periodontitis and an increase of com-
mensals following adjunctive antimicrobial therapy.227 Moreover, 
studies in several Central and North European countries (Germany, 
Sweden, Switzerland) do not show an increase in resistances in 
periodontitis-associated species when using the combination of 
amoxicillin and metronidazole222,228 or metronidazole alone229 as 
adjunctive treatments.

Another interesting question is whether metronidazole alone, 
ie, a narrow-spectrum medication targeted to strict anaerobes, is 
sufficient as an adjunctive antimicrobial. Compared to a combined 
regimen of two medicines, this could be expected to have fewer side 

effects and to limit unwanted effects on the aerobic and faculta-
tive residents of the oral microbiome. An adjunctive metronidazole 
treatment has been shown to result in reductions of P. gingivalis and 
T. forsythia, persisting up to 12 months after treatment.230 In a re-
cent clinical study dealing with A. actinomycetemcomitans-negative 
individuals,231 better clinical outcomes were demonstrated for pa-
tients adjunctively treated with amoxicillin and metronidazole than 
for those treated with metronidazole alone. Similarly, the combina-
tory regimen was more effective than metronidazole against strict 
anaerobes P.  gingivalis, T. forsythia, and T. denticola. In comparison 
to subgingival instrumentation alone, the adjunctive use of sys-
temic antimicrobials, especially the combination of metronidazole 
and amoxicillin, has been shown to result in significantly improved 
probing pocket depth, clinical attachment, and bleeding on probing 
values up to 6 and 12 months after treatment.209 Despite these ob-
served favorable clinical effects when adjunctive systemic antimi-
crobials are used, the counter case for adjunctive antibiotic use is 
drug resistance, which is a serious health and socio-economic prob-
lem globally.232 Therefore, in the EFP S3  clinical practice guidelines, 
created to support clinicians in their decision-making in the treat-
ment of stage I-III periodontitis, the routine use of systemic antibi-
otics as adjunct to subgingival debridement is not recommended.233 
However, their adjunctive use may be considered for specific patient 
categories, for example, generalized periodontitis stage III in young 
adults.
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